
The Emperor’s New Autofill Framework:
A Security Analysis of Autofill on iOS and Android
Sean Oesch

toesch1@vols.utk.edu
The University of Tennessee
Knoxville, Tennessee, USA

Anuj Gautam
anujgtm123@vols.utk.edu

The University of Tennessee
Knoxville, Tennessee, USA

Scott Ruoti
ruoti@utk.edu

The University of Tennessee
Knoxville, Tennessee, USA

ABSTRACT
Password managers help users more effectively manage their
passwords, encouraging them to adopt stronger passwords across
their many accounts. In contrast to desktop systems where
password managers receive no system-level support, mobile
operating systems provide autofill frameworks designed to
integrate with password managers to provide secure and usable
autofill for browsers and other apps installed on mobile devices. In
this paper, we evaluate mobile autofill frameworks on iOS and
Android, examining whether they achieve substantive benefits
over the ad-hoc desktop environment or become a problematic
single point of failure. Our results find that while the frameworks
address several common issues, they also enforce insecure
behavior and fail to provide password managers sufficient
information to override the frameworks’ insecure behavior,
resulting in mobile managers being less secure than their desktop
counterparts overall. We also demonstrate how these frameworks
act as a confused deputy in manager-assisted credential phishing
attacks. Our results demonstrate the need for significant
improvements to mobile autofill frameworks. We conclude the
paper with recommendations for the design and implementation
of secure autofill frameworks.

CCS CONCEPTS
• Security and privacy → Authentication; Domain-specific
security and privacy architectures.

KEYWORDS
password managers, mobile framework, authentication, security
evaluation

ACM Reference Format:
Sean Oesch, Anuj Gautam, and Scott Ruoti. 2021. The Emperor’s New
Autofill Framework: A Security Analysis of Autofill on iOS and Android. In
Annual Computer Security Applications Conference (ACSAC ’21), December
6–10, 2021, Virtual Event, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3485832.3485884

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485884

1 INTRODUCTION
The cognitive burden of remembering many strong, unique
passwords leads users to create easily guessed passwords [6, 22]
and to reuse passwords [5, 10, 21, 28]. These insecure behaviors
make targeted attacks easier and lead to large-scale account
compromise when data breaches occur. While other authentication
schemes have been proposed, passwords remain dominant [3, 4].

Password managers offer a pathway to help users more
effectively manage their passwords, assisting users to create strong
passwords, store those passwords, and finally fill those passwords
into login forms (i.e., password autofill), significantly reducing the
cognitive burden of using strong, unique passwords [17, 32]. On
the other hand, if implemented incorrectly, password managers
can become a single point of failure, putting all a user’s credentials
at risk [20]. To secure autofill, password managers must only fill
credentials when: (P1) the user has explicitly authorized the fill
operation [15, 24], (P2) the credential is mapped to the web
domain or app to be filled [1, 20], and (P3) the filled credential will
only be accessible to the mapped app or web domain. [25].

On desktop environments, password managers are primarily
implemented as ad-hoc browser extensions—i.e., the extension
individually implements all aspects of the autofill process without
support from OS or browser autofill frameworks. While some
desktop password managers correctly achieve P1 and P2 [20],
many have incorrect implementations that allow attackers to steal
or phish users’ credentials [15, 20, 24, 25], and none can fully
implement P3 due to technical limitations of browser extension
APIs [20, 25].

In contrast to the desktop environment, mobile operating
systems provide system-wide autofill frameworks that attempt to
standardize and secure the autofill process. Critically, these
frameworks have the potential to enforce correct handling of
P1–P3 for all mobile password managers. Additionally, these
frameworks provide support for autofill within apps, which is
largely unavailable on desktops.

In this paper, we conduct the first evaluation of the mobile autofill
frameworks, examining whether they achieve substantive benefits
over the ad-hoc desktop environment or instead become a
problematic single point of failure. In this evaluation, we consider
all such frameworks: iOS’s app extensions, iOS’s Password
AutoFill, and Android’s autofill service. Positively, our evaluation
finds that all frameworks correctly require user interaction before
autofilling credentials (P1), a marked improvement over the mixed
support on desktop. In contrast, we find that framework support
for P2 and P3 is severely limited.

Within browsers, we find that the frameworks do not correctly
validate the authenticity of the webpage nor ensure that filled

ar
X

iv
:2

10
4.

10
01

7v
2

 [
cs

.C
R

]
 2

8
Se

p
20

21

https://doi.org/10.1145/3485832.3485884
https://doi.org/10.1145/3485832.3485884

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Sean Oesch, Anuj Gautam, and Scott Ruoti

credentials will be sent to the appropriate domain upon form
submission. The frameworks also provide minimal information
about the webpage to the password managers, preventing them
from making appropriate security checks. Even with
improvements for P1, this leaves mobile password managers less
secure than their desktop counterparts.

Within apps, autofill behavior differs based on the type of
interface being filled: (1) native UI elements, (2) WebView controls,
and (3) custom-drawn UI elements, of which mobile autofill
frameworks support the first two. For native elements, we find that
iOS Password AutoFill provides a secure and robust binding
between credentials and apps, achieving P2 and P3. In contrast, the
Android autofill service provides no such binding, leaving the
mapping of credentials and apps to the individual password
managers, with nearly all such mappings being insecure (breaking
P2). Even worse, iOS app extensions fail to provide a secure
mapping mechanism and prevent managers from implementing
their own mappings, allowing any credential to be autofilled into
any app.

For WebView controls, credentials should only be autofilled if
they match the webpage’s domain within the WebView control,
regardless of which credentials are mapped to the app. Such
behavior is enforced by iOS Password Autofill (achieving P2),
whereas both iOS app extensions and the Android autofill service
leave the mapping decision to the individual password managers,
with only some managers implementing the mapping correctly.
Managers that do not correctly implement this mapping instead
autofill the app’s mapped credentials into the webpage, allowing
malicious or compromised webpages displayed in benign apps to
phish the app’s mapped credential (breaking P3). Even in the
frameworks and managers that do enforce a secure mapping, we
identify a limitation in the design of WebView controls on Android
and iOS that allows a malicious app to host benign webpages
within a (potentially invisible) WebView and steal filled
credentials, enabling the surreptitious phishing of all the user’s
credentials (also breaking P3).

Critically, in both phishing attacks, the password manager acts
as a confused deputy, displaying the autofill dialog and suggesting
that the user fills the credential being targeted by the attack. This
behavior is highly problematic, as, in all other contexts, the autofill
dialog is an indication that phishing is not occurring and is designed
to give users confidence in filling their credentials. As such, users
are unlikely to look carefully at the autofill dialog, increasing the
probability that their credentials will be successfully stolen.

Overall, our results show significant security issues with mobile
autofill frameworks, limiting both the utility and usability (as users
need to be ever vigilant) of mobile password managers. This
situation is especially problematic as password managers are being
promoted frequently by the news media and security experts. Still,
all is not lost, and with improvements, these frameworks could
become the most secure way to implement autofill on both mobile
and desktop. We conclude this paper by providing
recommendations for improving autofill frameworks and detail
how the design of WebView controls could be changed to address
the phishing attacks identified in this paper.

2 BACKGROUND
Password managers serve to help users (a) create random, unique
credentials for each service they authenticate to, (b) store the user’s
credentials (both generated and user-entered), and (c) fill those
credentials for the user.

On desktop environments, password managers are implemented
as ad-hoc browser extensions (i.e., the browser provides no
first-party APIs supporting password management). In contrast, on
mobile, there are first-party frameworks that assist managers in
conducting the autofill process. This first-party support allows for
autofill both within browsers (see §4) and within apps, something
largely not possible with desktop managers.

For apps, there are three types of interfaces where autofill would
be applicable: (1) native UI elements (i.e., OS-provided widgets),
(2) using custom UI elements drawn and managed by the app, and
(3) within a webpage displayed in a WebView hosted by the app.
The security of autofill for native UI elements is discussed in §5,
while the security of autofill in WebView controls is discussed in
6. Mobile autofill frameworks do not support custom rendered UI
elements.

2.1 Secure Autofill
By examining past research [1, 15, 20, 24, 25], we have synthesized
three properties that need to be guaranteed by password managers
in order for the autofill operation to be secure:

P1—User authorization. Requiring user authorization before
filling credentials helps reduce the attack surface by limiting how
often credentials are filled and thus vulnerable to theft [15, 20, 24].
Without interaction, credentials would be automatically filled into
any login form, leaving them vulnerable to theft if an attacker can
control the page’s contents (for example, XSS vulnerabilities remain
common [26], supply chain attacks are increasingly regular [31],
and network attacks are feasible when users connect to public WiFi
access points [19]).

Note, it should not be assumed that users will carefully examine
these dialogs, as they likely will become habituated to clicking
through them [7, 8]. Instead, requiring interaction is primarily
intended to prevent the surreptitious entry and subsequent theft of
credentials—for example, Firefox’s built-in password manager fails
to require user interaction and due to other flaws in its
implementation allows an adversary to silently steal all of the
user’s credentials [20]; such an attack would be difficult if not
impossible to conduct if user interaction was required as the attack
would trigger thousands of autofill requests, alerting the user that
something was wrong [20]. Similarly, requiring interaction can
also help prevent attacks when the user is not trying to
authenticate, in which case they are more likely to click out of the
autofill interface to resume their usage of the webpage or app, thus
preventing potential credential theft.

P2—Secure credential to destination mapping. Managers
need to be able to map credentials to the webpage and apps they
should be filled in, preventing other webpages and apps from
accessing those credentials [1]. Such a mapping prevents malicious
webpages and apps from stealing credentials intended for other
webpages and apps—i.e., phishing attacks. This mapping is
commonly done by associating credentials with domains and then

The Emperor’s New Autofill Framework: A Security Analysis of Autofill on iOS and Android ACSAC ’21, December 6–10, 2021, Virtual Event, USA

associating those domains with apps.When properly implemented,
the autofill interface then becomes a sign to users that they are not
being phished and can safely enter the suggested credentials on the
current site or app.

P3—Credentials are only accessible to mapped
destinations. Managers should ensure that after credentials are
filled, they will only be accessible to mapped destinations [20, 25].
For webpages, that means that the credentials will only be sent to
a server on the same domain and that they will not be accessible to
malicious JavaScript running on the page that may try to exfiltrate
the credentials to different domains [25]. For apps, this means that
credentials should not be available to other apps on the system.
Finally, it also means that if the app is hosting a webpage in a
WebView control, that the webpage cannot access credentials
intended for the app, nor vice-versa.

While P3 and P1 help protect against many of the same attacks,
leveraging both provides defense-in-depth. This is especially
important as both the current paper and past work [15, 20, 24, 25]
demonstrate that P3 is poorly supported in most contexts.

2.2 WebView
WebView controls are UI widgets provided by the mobile operating
system that serve as embeddable, minimalist browsers. Apps use
them to display web content directly within the app instead of
having users click a link that opens the main mobile browser. On
Android, WebViews are added using the WebView1 class, whereas
on iOS they are added using the WKWebView2 class. In both cases,
the WebView control is implemented using WebKit.

To allow for integration between a hosting app and the content
in the WebView, both iOS and Android allow the WebView control
to be styled by the hosting app. This styling is arbitrary and can
even go so far as to make it impossible to distinguish between
native widgets and content displayed in the WebView. As such, the
app can prevent the user from knowing they are interacting with
content from a domain the app should not have access to, making
phishing attacks trivial [16].

Additionally, the hosting app can inject JavaScript into the
content hosted in the WebView. While this is intended to enable
bidirectional communication between the app and the WebView
content, in practice, it allows the app arbitrary control of the
WebView content. For security reasons, the Android developer
documentation recommends that WebView only be used to show
trusted, first-party content. However, prior work by Yang et
al. [30] found that many popular apps—such as Google News,
Facebook, and Uber—load third-party, untrusted content in a
WebView and that 11K of the 17K most popular free apps on
Google Play contained entry points to WebView loading APIs.

3 EVALUATION METHODOLOGY
There are three mobile autofill frameworks available on iOS and
Android (the dominant mobile platforms). On iOS, there is the app
extensions framework and the Password AutoFill framework. On
Android, there is the autofill service. Prior to the availability of
the Android autofill service, many password managers used the

1https://developer.android.com/guide/webapps/webview
2https://developer.apple.com/documentation/webkit/wkwebview

(a) Selecting app extension (b) Selecting password

Figure 1: iOS App Extensions UI

Android accessibility (a11y) service to hack in support for autofill.
We chose not to include the a11y service in our evaluation for two
reasons: first, it is not and designed as an autofill framework and
thus does not serve as a meaningful point of comparison and second,
it is now well-known that the accessibility service is ill-suited to
be used for security purposes [11, 13, 14, 18].

As part of our evaluation, we identified three contexts in which
autofill occurs on mobile devices:

(1) Webpages displayed in mobile browsers.
(2) Native UI elements (i.e., widgets provided by the OS)

presented within mobile apps.
(3) Webpages displayed in WebView controls presented within

mobile apps.
In our evaluation, we consider all three of these contexts. While

the requirements to satisfy P1 are the same for each of these
contexts, they diverge for P2 and P3. As such, we used different
tests in each context to explore the security of autofill. These
context-dependent tests along with their results are given in §4, §5,
and §6, respectively.

3.1 Mobile Autofill Frameworks
Below, we give a brief overview of each autofill framework we
studied.

3.1.1 iOS App Extensions. App extensions were introduced in iOS
8 (2014) and allow a host app to interact with another app (e.g., a
password manager) using a predefined set of extension features.
For password autofill, this requires the password manager to
implement the set of functions associated with the password
management extension feature and for host apps to be updated to
query this extension feature. Note, the functionality provided by
app extensions is minimal, enabling autofill, but not attempting to
secure it. For example, host apps are trusted to identify which
credentials they should receive, with the framework doing nothing

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Sean Oesch, Anuj Gautam, and Scott Ruoti

(a) Credential found (b) No credential found

Figure 2: iOS Password AutoFill UI

to check this mapping or verifying that the host app is not sending
those credentials to a different domain. Figure 1 shows the
interface for app extensions, first requiring the user to select
which app extension to use (see Figure 1a) and then selecting the
credentials (see Figure 1b).

While superseded by iOS Password AutoFill, we included iOS app
extensions in our evaluation for three reasons: (1) it is still supported
in iOS and remains functional in some password managers (e.g.,
1Password, Keeper, LastPass) and host apps (e.g., Safari, Edge); (2)
for older devices that cannot be updated to iOS 12, app extensions
remain the preferred method for password autofill; (3) it provides a
distinct approach to designing frameworks which provides a helpful
point of comparison to the other two frameworks.

3.1.2 iOS Password AutoFill. The Password AutoFill framework
was introduced in iOS 12 (2018) and takes a radically different
approach to autofill. Whereas app extensions provided minimal
functionality, Password AutoFill controls the entire autofill,
attempting to improve the usability and security of password
autofill. First, it handles the identification of login forms in both
apps and websites, though the host app can help this process by
annotating appropriate fields using the textContentType
attribute. Second, Password AutoFill ensures a secure mapping
between an app and the domains that should have their credentials
entered into that app. That is done by having app developers
include an Associated Domains Entitlement that indicates which
domains are associated with the app; the domain operator is also
required to include an apple-app-site-association file on
their website indicating which apps can use credentials for that
domain. Third, Password AutoFill handles both the UI shown to
users and the actual entering of credentials into the target app.
Figure 2 shows the interface for Password AutoFill, both when an
associated domain can be found (see Figure 2a) and when not (see
Figure 2b).

(a) LastPass
(b) Keeper

Figure 3: Android Autofill Service UI

iO
S
Pa
ss
w
or
d
A
ut
oF
ill

iO
S
ap
p
ex
te
ns
io
ns

A
nd

ro
id

au
to
fil
ls
er
vi
ce

iOS Android
System Framework Version
1Password ✔ ✔ ✔ 7.4.7 7.4
Avast Passwords ✔ ✔ ✔ 1.15.4 1.6.4
Bitwarden ✔ ✔ ✔ 2.3.1 2.2.8
Dashlane ✔ ✔ 6.2013.0 6.2006.3
Enpass ✔ ✔ ✔ 6.4.2 6.4.0
iCloud Keychain ✔ 13.3.1 —
Keepass2Android ✔ — 1.07b-r0
Keeper ✔ ✔ ✔ 14.9.1 14.5.20
LastPass ✔ ✔ ✔ 4.8.0 4.11.4
Norton ✔ ✔ ✔ 6.8.78 6.5.2
RoboForm ✔ ✔ ✔ 8.9.2 8.10.4
SafeInCloud ✔ ✔ 20.0.1 20.2.1
Smart Lock ✔ — 9.0
StrongBox ✔ 1.47.4 —

Table 1: Analyzed password managers on iOS and Android

3.1.3 Android Autofill Service. In 2017, Android introduced the
autofill service as part of API 26 (Android 8.0—Oreo). This service
falls between iOS’s app extensions and Password AutoFill in terms
of the features it supports. Like Password AutoFill, it handles the
identification and filling of login forms for apps and websites, with
apps being able to help this process by annotating interfaces using
the android:autofillHints attribute. Unlike Password AutoFill,
it does not control the credential selection UI (Figure 3 gives two
examples of UIs provided by password managers on Android), nor
does it enforce any app-to-domain credential mapping.

3.2 Testing Approach
Our evaluation of the three mobile autofill frameworks was
primarily empirical in nature. More specifically, we selected and
evaluated 14 mobile password managers, each of which was

The Emperor’s New Autofill Framework: A Security Analysis of Autofill on iOS and Android ACSAC ’21, December 6–10, 2021, Virtual Event, USA

implemented using one or more of the frameworks under test.
These managers were chosen as they are the most popular
password managers implemented with the frameworks under test.
Table 1 summarizes these password managers, which frameworks
they support, and which versions were tested. Download counts
for each tool are given in Appendix A.

For each of these managers, we conducted a series of tests
designed to evaluate how well the manager enforced P1–P3 (see
§2.1). Within these evaluations, we paid attention to when the
results were either the same and when they were different, helping
us measure to what extent P1–P3 were enforced by the framework,
to what extent the frameworks left implementing these properties
to the individual managers, and to what extent the frameworks
limited the ability of the individual managers to achieve these
properties. In addition to this empirical evaluation, we also
reviewed the documentation and APIs for each framework to try
and contextualize and confirm our results. We also reached out to
developers of the password managers to understand the results,
though only a few responded to our requests for information.

Testing in iOS was performed using an iPhone 7 running iOS 13.
Testing on Android was conducted using the Genymotion Android
Emulator to simulate a Google Pixel 2 device running Android 9
(Pie).

4 BROWSER AUTOFILL
We begin our investigation by exploring autofill within mobile
browsers. As the security concerns for autofill on mobile browsers
are the same as those on desktops, we base our methodology on
the recent evaluation of desktop password managers conducted by
Oesch and Ruoti [20]. We choose to use this methodology for two
reasons—first, it is complete, covering all necessary aspects of
browser autofill security, and second, it allows us to directly
compare the performance of mobile password managers to desktop
managers. For each of the tests described by Oesch and Ruoti, we
identify which of the three properties we synthesized (P1–P3) that
the test relates to, removing extraneous tests that identify
interesting edge cases but which cover features not needed to
implement autofill securely. We also considered if there were any
additional tests needed to satisfy the three properties but found
that the trimmed set of tests was sufficient to fully evaluate P1–P3.

All tests were performed using the default browser for each
operating system: Safari (v13.3.1) for iOS and Chrome (v 81.0.4044)
for Android. We chose to focus on the default browser as they are
likely the most widely used browser on each platform. Additionally,
the browsers are developed by the same company developing the
autofill framework, allowing us to measure the security of the
frameworks at their best.

In the remainder of this section, we describe the paired-down
tests along with our results. These results for each framework
are summarized in Table 2. To allow for an easy comparison with
desktop managers, Table 2 also provides the ratings for the most
and least secure desktop managers from the prior work [20]. The
full results for individual managers can be seen in Appendix B.

U
se
ri
nt
er
ac
tio

n
al
w
ay
sr

eq
ui
re
d

M
ap
sc

re
de
nt
ia
ls
to

do
m
ai
ns

W
on

’t
fil
lH

TT
PS

→
H
TT

P

W
on

’t
fil
lH

TT
PS

→
ba
d
ce
rt

Fi
lls

pa
ss
w
or
d
on

ly
on

tr
an
sm

is
si
on

W
on

’t
fil
ld

iff
er
en
ta

ct
io
n
(s
ta
tic

)

W
on

’t
fil
ld

iff
er
en
ta

ct
io
n
(d
yn

am
ic
)

W
on

’t
fil
ld

iff
er
en
tm

et
ho
d

W
on

’t
fil
lc
ro
ss
-o
rig

in
ifr
am

e

Framework P1 P2 P3
iOS Password AutoFill # # # # # # #
iOS App Extensions # # # # # #
Android Autofill Service # # # # # # ✎

Most secure desktop manager∗ G# # G# G# G#
Least secure desktop manager∗ # # # # #

 Secure behavior G# Partially secure behavior
Insecure behavior ✎ Delegated to password manager

∗Most and least secure desktop managers refer to the overall most and least secure
managers—1Password and Firefox, respectively—from Oesch and Ruoti’s work [20].

Table 2: Autofill Security in Mobile Browsers

4.1 P1—User Interaction
We tested whether this property was supported by constructing
a login webpage and visiting it in the mobile browser, recording
whether user interaction was required before credentials were filled.
We visited this webpage over HTTP, HTTPS, and usingHTTPSwith
an invalid certificate to test whether this impacted user interaction
requirements (as it does on some desktop browsers).

Our results show that all three frameworks correctly require
user interaction before filling credentials. This behavior is a
marked improvement over desktop managers, where only 2 of the
12 managers tested by Oesch and Ruoti enforced user interaction.
This result shows the potential for autofill frameworks to enforce
correct behavior across all password managers.

Finding #1: Within browsers, P1 is enforced by all frameworks,
a marked improvement over the situation on desktops.

4.2 P2—Credential-to-Domain Mapping
To test credential mapping, we first registered credentials for
different domains. We then created testing webpages across
multiple domains and checked that each domain only received
approripate credentials.

We also tested if the credential mapping considered whether the
webpage was authenticated using HTTPS. To do this, we created
test pages that were served over HTTP and over HTTPS with an
invalid certificate, respectively, observing whether autofill would
proceed or not. Ideally, autofill would not be allowed in these cases,
as such occurrences could represent a network attack being used
to steal credentials.3 We also allow for a rating of partially secure
3The user can always override this behavior by manually copying and pasting
credentials.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Sean Oesch, Anuj Gautam, and Scott Ruoti

when autofill is allowed, but only after notifying the user of the
potential danger.

We find that while all password managers map credentials to
their appropriate domains, none of them check whether the
webpage was served over a secure HTTPS connection, thus
leaving open the possibility of network injection attacks. Worse
yet, the frameworks provide insufficient information to the
password managers, preventing them from checking and enforcing
this property themselves. This leads to mobile managers being as
bad as or worse than even the least secure desktop managers
regarding P2.

Finding #2: Within browsers, P2 is only partially enforced by
the frameworks. The frameworks also prevent the managers
from being able to enforce this property, causing mobile
managers to be less secure than all desktop managers regarding
P2.

4.3 P3—Protecting Filled Credentials
The best way to achieve P3 is to only fill credentials into the web
request (where they are not accessible by JavaScript), not into the
webpage, an approach outlined by Stock and Johns [25].
Implementing this proposal is not possible on desktops as
browsers do not allow extensions to modify web requests. In
contrast, there should be no barrier for autofill frameworks to
provide this functionality as the same entity maintains the
framework and browser. We test whether this proposal is
implemented by trying to scrape credentials using JavaScript.

Without the above approach, it is not feasible to completely
prevent malicious JavaScript from accessing the credentials
enetered on a webpage. Still, it is possible to limit the likelihood
that those credentials will be accidentally sent to an unmapped
domain. First, the login form’s action attribute should be checked
to ensure that credentials will be submitted to the appropriate
domain. We test this by creating two webpages, one that has the
form’s action set to a different domain at page load (our static test)
and one that sets the action field after page load, but before the
credentials are autofilled (out dynamic test).

Second, the login form’s method attribute should be checked
to ensure that the credentials are not included in the URL (i.e.,
using a GET request), as this could potentially leak the credentials to
another domain through the HTTP Referrer header. We test this
by creating a webpage with the method set to GET and observing
whether autofill is allowed. In both cases, we grade refusing to fill
the credential as secure behavior, with a partially secure score being
awarded if the credential is filled only after warning the user about
potential dangers.

Finally, autofill within cross-domain iframes should be
disabled [20, 24, 25]. If a user visits a malicious or compromised
webpage, the adversary can open a cross-origin iframe to any
domain where they can inject JavaScript and steal credentials
when those credentials are autofilled (see Figure 4). In the worst
case, if user interaction is not required, the credential theft will
always succeed and unnoticed by the user. Even if user interaction
is required, the adversary is still able to effectively launch a
phishing attack, which is likely to succeed as the appearance of an

Cross-origin iframe overlay
of any walmart.com page
with XSS vulnerability

evilwalmart.com

Figure 4: Example of a cross-origin iframe phishing attack

autofill dialog is supposed to indicate to the user that a phishing
attack is not occurring (see §2.1). We test this by creating a
webpage with a cross-origin iframe and observe whether the
iframe triggers autofill.

Our results show that none of the password managers adopt
Stock and Johns’ proposal. Moreover, none of them check the
action or method fields on the login form. Similar to P2, the
frameworks also fail to provide sufficient information to the
managers to allow them to implement these features themselves.

Regarding cross-origin iframes, iOS Password AutoFill does not
prevent cross-origin autofill and does not allow any of the
managers to override this behavior. In contrast, the older iOS app
extensions properly prevent cross-origin autofill. On Android, the
autofill service does not prevent cross-origin autofill but does
allow managers to override this behavior. As with P2, the mobile
frameworks perform as bad as or worse than even the least secure
desktop manager regarding P3.

Finding #3: Within browsers, P3 is not enforced, leaving filled
credentials vulnerable to both theft and accidental leakage.
The frameworks also prevent the managers from being able
to enforce this property, causing mobile managers to be less
secure than nearly all desktop managers regarding P3.

5 APP AUTOFILL—NATIVE UI ELEMENTS
We continue our evaluation by examining autofill for native UI
elements within apps. An overview of the results of our analysis is
given in Table 3.

5.1 P1—User Interaction
We tested whether this property was supported by constructing a
custom app and attempting to autofill it, recording whether user
interaction was required before credentials were filled. Our results
show that all three frameworks correctly require user interaction
before filling credentials.

The Emperor’s New Autofill Framework: A Security Analysis of Autofill on iOS and Android ACSAC ’21, December 6–10, 2021, Virtual Event, USA

U
se
ri
nt
er
ac
tio

n
al
w
ay
sr

eq
ui
re
d

Se
cu
re

ap
p-
to
-d
om

ai
n
m
ap
pi
ng

Se
cu
re

do
m
ai
n-
to
-a
pp

m
ap
pi
ng

Pr
ev
en
ts
ac
ce
ss

fr
om

ot
he
ra

pp
s

Pr
ev
en
ts
ac
ce
ss

fr
om

W
eb
Vi
ew

Framework P1 P2 P3
iOS Password AutoFill
iOS App Extensions # #
Android Autofill Service ✎ ✎

 Secure behavior # Insecure behavior
✎ Delegated to password manager

Table 3: Autofill Security for Native UI Elements in Apps

Finding #4: Within native UI elements, P1 is enforced by all
frameworks.

5.2 P2—Credential-to-App Mapping
There are two ways that credentials could be mapped to apps. First,
there could be a direct mapping between credentials and apps.
Second, there could be a mapping between Web domains and apps,
leveraging the existing credential-to-domain mapping to provide
an indirect credential-to-app mapping. It is this second approach
that is used by all mobile frameworks and managers.

Ideally, domain-to-app mappings should be bi-directional. First,
the app should identify which domains it is associated with,
limiting the number of credentials it could access if the app
became compromised (an application of the principle of least
privilege). Second, a domain should list which apps are allowed
access to its associated credentials, preventing a malicious app
from accessing arbitrary domains’ credentials. Only when both
mappings agree should a credential for the given domain be
suggested by the autofill framework. Also, both mappings should
be secured cryptographically—for example, by (1) code signing the
app (including the file identifying the mapped domains), (2) using
the fingerprint of the code signing certificate in the identification
of apps on the domain’s side, and (3) transmitting the domain’s
mappings using TLS. Note, this bi-directional mapping does
impede the use of single sign-on (SSO)—for example, Google’s
domain is unlikely to whitelist all the apps that use it for SSO—but
this use case can be handled by hosting the SSO interface in a
WebView (see §6).

To evaluate whether the frameworks satisfy these requirements,
we first examined the documentation for each framework to
understand what process they claimed to use and identify the
mechanisms they used for app-to-domain mappings. Our findings
show that all three frameworks take a drastically different
approach to P2, each requiring its own testing strategy.

5.2.1 iOS Password AutoFill. Apps indicate their associated
domains by including an Associated Domains Entitlement file in
their app package. Since this file is part of the app package, its
contents are signed as part of the code signing process required for
all iOS apps. Domains indicate the apps they are associated with
by including an apple-app-site-association file at a specific
URL on that domain. This file indicates which apps are allowed to
use credentials for that domain, with the appropriate code signing
key for each app also being identified. Credentials will only be
autofilled if both mappings exist for a given domain.

To confirm that this functionality was working as intended, we
created several testing apps and domains. These apps included
some with and without the appropriate mappings. We also created
look-alike apps with all the same information as a legitimate app
but which were not signed with the correct code signing key.

Throughout all our testing, iOS Password AutoFill performed
exactly as it should, providing a secure credential-to-app mapping
and satisfying P2.

5.2.2 iOS App Extensions. The iOS app extension framework does
not provide a mapping between apps and domains. This behavior
allows malicious apps to phish users’ credentials, putting the onus
on the user to detect that the malicious app should not receive the
credentials suggested by the password manager, which, as
previously discussed, runs counter to how autofill dialogs are
supposed to work (see §2.1). We verified this behavior by building
an app that uses app extensions to autofill a login form and
verifying that we could request credentials for arbitrary domains.

5.2.3 Android Autofill Service. The Android autofill service does
not provide a mapping between apps and domains, instead leaving
this functionality up to the individual managers to implement. To
analyze the mappings used by the 12 Android password managers
we tested, we first inspected the autofill ceremony to see if domain-
appropriate passwords were being suggested. If they were, we used
jadyx4 to decompile the password manager’s apk file and try to
reverse engineer the credential mapping. As part of this effort,
we also used appmon5 to intercept API calls from the password
manager.

In our analysis, we identified four (non-exclusive) domain-to-
app mappings used by the various managers: (a) a static list of
app-to-domain mappings; (b) a custom heuristic that matches apps
to domains based on the app’s applicationId; (c) digital Asset
Links (DAL) files hosted by domains at a specific URL are used to
specify which apps—identified using their code signing key—should
be mapped to that domain; and (d) relying on manual mappings
provided by end-users. Additional details about the implementation
of each manager’s mapping scheme is discussed in Appendix C.

None of these mappings use a bidirectional app-to-domain
mapping. Only one mapping (DAL) requires domains to identify
with which apps they are associated. Only two managers check a
cryptographic attestation of app identity, meaning that look-alike
and side-loaded apps can impersonate legitimate apps and receive
their associated credentials. As such, our results demonstrate that
while the autofill service’s decision to delegating mappings could

4https://github.com/skylot/jadx
5https://github.com/dpnishant/appmon

https://github.com/skylot/jadx
https://github.com/dpnishant/appmon

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Sean Oesch, Anuj Gautam, and Scott Ruoti

work in theory, in practice, it turns out to be a poor design
decision.

Finding #5: For native UI elements, iOS AutoFill correctly
provides P2. In stark contrast, iOS app extensions provide
no credential-to-app mapping, allowing any app to request
credentials for domains. The Android autofill service leaves
P2 up to managers to implement, but this turns out to be a
bad decision with no manager correctly implementing such
mappings.

5.3 P3—Protecting Filled Credentials
Filled credentials should only be accessible to the app receiving
those credentials, not to other apps or by webpages hosted in
WebView controls within the filled app. For all three frameworks,
this property is satisfied by strong app segmentation guarantees
provided by each framework’s respective operating system. Note,
these protections can be side-stepped on Android using the
accessibility service, but this is necessary to support individuals
with disabilities, and as such, users need to remain careful about
which apps they give permissions to control this service.

Finding #6: Within native UI elements, P3 is enforced by the
mobile operating system.

6 APP AUTOFILL—WEBVIEW CONTROLS
We end our investigation by considering autofill within WebView
controls hosted inside apps. Such functionality is critical to enable
a range of use cases:

(1) Supporting single sign-on (SSO). As described in §5,
autofill for native UI elements should only be allowed if the
domain owner indicates the app is associated with the
domain. As SSO providers are unlikely to whitelist every
app that wants to use SSO, apps can instead use an
embedded WebView control to display the SSO flow.

(2) Thin wrapper apps.Many mobile apps serve as little more
than a thin wrapper around an existing website, with the
app displaying a WebView control that displays the wrapped
website.

(3) Avoiding duplicate code. Instead of having one
authentication codebase for use on a website and one for
the app associated with the website, app developers may
instead choose to have authentication handled by the
website using a WebView control.

It is crucial to ensure that credentials are filled safely in each of
these cases, especially for SSO credentials, whose theft would have
an outsized effect. An overview of our analysis of autofill security
in WebView controls is given in Table 4.

6.1 P1—User Interaction
We tested whether this property was supported by constructing a
custom app with an embedded WebView control and attempting to
autofill the WebView content, recording whether user interaction
was required before credentials were filled. Our results show that

U
se
ri
nt
er
ac
tio

n
al
w
ay
sr

eq
ui
re
d

M
ap
sc

re
de
nt
ia
ls
to

do
m
ai
ns

W
on

’t
fil
lH

TT
PS

→
H
TT

P

W
on

’t
fil
lH

TT
PS

→
ba
d
ce
rt

Pr
ev
en
ts
ac
ce
ss

fr
om

ho
st
in
g
ap
p

Fi
lls

pa
ss
w
or
d
on

ly
on

tr
an
sm

is
si
on

W
on

’t
fil
ld

iff
er
en
ta

ct
io

n
(s
ta
tic

)

W
on

’t
fil
ld

iff
er
en
ta

ct
io

n
(d
yn

am
ic
)

W
on

’t
fil
ld

iff
er
en
tm

et
ho

d

W
on

’t
fil
lc
ro
ss
-o
rig

in
ifr
am

e

Framework P1 P2 P3
iOS Password AutoFill # # # # # # # #
iOS App Extensions ✎ # # # # # # #
Android Autofill Service ✎ # # # # # # # ✎

 Secure behavior # Insecure behavior
✎ Delegated to password manager

Table 4: Autofill Security for WebView Controls

all three frameworks correctly require user interaction before filling
credentials.

Finding #7: Within native UI elements, P1 is enforced by all
frameworks.

6.2 P2—Credential-to-Domain Mapping
ForWebView, credentials should be mapped based on the domain of
the content displayed inside the WebView. To test this, we created a
test appmapped to one set of credentials, with the test app including
a WebView with content from a domain associated with a different
set of credentials. We then tried to autofill a login form within the
WebView and examined the set of credentials. In addition to this
test, we also replicate the two connection security tests used to
evaluate mobile browser autofill.

Our results find that iOS Password AutoFill correctly maps
credentials to the domain displayed in the WebView control. iOS
app extensions and the Android autofill service leave the mapping
to individual managers, with only a minority using the correct
mapping scheme.6 In contrast, most managers autofill credentials
into the WebView based on the app’s associated domains.7 This
behavior leaves the app credentials vulnerable to phishing from
compromised or malicious content displayed in the WebView,
further described below. The remaining managers refuse to autofill
credentials into WebView controls, a significant limitation on
utility.8

For the connection security tests, our results match the poor
results for autofill within mobile browsers.9

6iOS app extensions—1Password, Android autofill service—Dashlane, Keeper, Lockwise,
SafeInCloud, and Smart Lock
7iOS app extensions—Keeper, Bitwarden, LastPass, and Enpass, Android autofill
service—1Password, Bitwarden, Enpass, Keepass2Android, Keeper, LastPass, and
RoboForm.
8iOS app extensions—Avast, Norton, and Roboform, Android autofill service—Avast.
9Android’s WebView will not display HTTP content by default, though this can
be overridden. When overridden autofill still works, so we graded this as insecure
behavior.

The Emperor’s New Autofill Framework: A Security Analysis of Autofill on iOS and Android ACSAC ’21, December 6–10, 2021, Virtual Event, USA

6.2.1 Phishing Attack #1: Using a Malicious Webpage. In this
phishing attack, a benign app uses a WebView to display content
from a compromised domain—either because the attacker
compromised a domain usually used by the app (e.g., XSS or
supply chain attack) or because the attacker tricked the app into
loading a domain of the attackers choosing. Prior research has
shown that such vulnerabilities are common in mobile apps [30].
Once displayed, the malicious domain displays a (possibly hidden)
login form, triggering the autofill ceremony and causing the
password manager to suggest the user autofill the app’s associated
credentials (as opposed to the domain’s associated credentials) into
the WebView. As the autofill dialog is intended to give confidence
to users that it is safe to enter credentials (see §2.1), it is unlikely
that they will even consider the possibility that a phishing attack is
occurring. Moreover, depending on the styling of the WebView
and the content displayed therein, there may be no visual
indication that the user is interacting with content not native to
the app (see §2.2), eliminating nearly any chance that the user
could detect a phishing attack.

To validate this attack, we developed a proof-of-concept app
that displays content from a different domain in a WebView. The
displayed (malicious) domain presented a login form, styling it to
look like part of the hosting app. When the autofill framework
suggested credentials, it was the app’s, not the domain’s associated
credentials. After clicking through the dialog, these credentials
were sent to the malicious domain, successfully completing the
phishing attack. Based on our own experience with this proof-of-
concept app and prior work [7, 8, 16, 27], we believe it should not
be too difficult for adversaries to leverage this phishing attack in
vulnerable managers.

Finding #8: Within WebView controls, only iOS Password
AutoFill correctly maps credentials to the domain of the content
in theWebView. The remaining frameworks leave this mapping
up to the managers, with most managers using an incorrect
mapping. This incorrect mapping leaves users vulnerable to a
phishing attack where benign app credentials can be stolen by
compromised content displayed in the WebView.

6.3 P3—Protecting Filled Credentials
After filling credentials into the WebView, it should not be possible
for the hosting app to extract those credentials. Without this
protection, it would be possible for a malicious app to host
arbitrary login forms from various domains to steal those
credentials. To test this, we created a demo app mapped to one set
of credentials, with the demo app including a WebView with
content from a domain associated with a different set of
credentials. After autofilling credentials, we then attempted to use
the hosting app to steal the credentials from the WebView. In
addition to this test, we also replicate the five P3 tests used to
evaluate mobile browser autofill.

We find that in each case, the WebView allowed the injection
of malicious JavaScript into the WebView by the hosting app, with
this JavaScript able to find and exfiltrate filled credentials. This
behavior leaves all of a user’s credentials vulnerable to phishing by
a malicious app.For the remaining tests, our results match the poor

results for autofill within mobile browsers. Note, these problems
could all be addressed by only filling credentials at the point they are
transmitted to the server [25], preventing the malicious JavaScript
from accessing them on the webpage.

6.3.1 Phishing Attack #2: Using a Malicious App. On both Android
and iOS, the WebView control allows apps to inject JavaScript into
any webpage displayed in a WebView. A malicious app can use this
feature to inject JavaScript that waits for credentials to be filled
into the WebView and then exfiltrate them back to the malicious
app. After injecting the appropriate code, the malicious app triggers
the autofill dialog by selecting the login elements hosted within
the WebView, causing the autofill framework to suggest the user
autofill the domain’s associated credentials. The adversary is also
free to style the app, the WebView, and the content hosted in the
WebView so that it is impossible for the user to tell that they are
interacting with a WebView—for example, styling the WebView so
that only a single text entry box (e.g., the username field) is shown,
with no indication that the textbox it is not a native UI element.

As the autofill dialog is intended to give confidence to users that
it is safe to enter credentials (see §2.1), it is unlikely that they will
even consider the possibility that a phishing attack is occurring.
Still, if the adversary were to try to steal all the user’s credentials
immediately, this would likely be detected as the user would be
bombarded with hundreds of autofill dialogs. Instead, a careful
adversary could stagger phishing attacks to instances when the
user expects to authenticate within the app, stealing credentials
over a long period.

We developed proof-of-concept apps for Android and iOS that
implement this attack. This app is styled to look like the Walmart
app and phishes credentials when users attempt to log in. Listing 1
shows the critical code used to implement the attack. In both apps,
we confirmed that our app was able to trigger autofill requests for
arbitrary domains. Additionally, based on our experience with this
app and past research into phishing [7, 8, 16, 27], we believe it is
unlikely that users would detect the attack.

Finding #9: Within WebView, P3 is not enforced, leaving
filled credentials vulnerable to malicious apps and other Web
vulnerabilities.

7 RELATEDWORK
Desktop Autofill Security: Silver et al. [24] studied the autofill
feature of ten password managers. They demonstrated that if a
password manager autofilled passwords without requiring user
interaction, it was possible to steal a user’s credentials for all
websites vulnerable to a network injection attack or had an XSS
vulnerability on any page of the website. They also showed that
even if user interaction was required, if autofill was allowed inside
an iframe, then the attacker could leverage clickjacking to achieve
user interaction without users realizing they were approving the
release of their credentials. Stock and Johns [25] also studied
autofill-related vulnerabilities in six browser-based password
managers and had similar findings to Silver et al. Li et al. [15]
studied five extension-based password managers and found logic

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Sean Oesch, Anuj Gautam, and Scott Ruoti

1 let controller = WKUserContentController ()
2 controller.add(self, name: "callbackHandler")
3
4 func userContentController(_controller: WKUserContentController, didReceive message: WKScriptMessage) {
5 if(message.name == "callbackHandler") {
6 print("User credentials are \(message.body)")
7 }
8 }

(a) Malicious iOS app

1 var username = document.getElementById("email").value;
2 var password = document.getElementById("password").value;
3 var credentials = `window.location.hostname:username:password `;
4 window.webkit.messageHandlers.callbackHandler.postMessage(credentials);

(b) Injected JavaScript for iOS WebView

1 public class WebAppInterface {
2 Context ctx;
3 WebAppInterface(Context c) { ctx = c; }
4
5 @JavascriptInterface
6 public void stealCredential(String domain, String uname, String pword) {
7 Toast.makeText(ctx, String.format(s:%s:%s", domain , uname , pword),Toast.LENGTH_SHORT).show();
8 }
9 }

(c) Malicious Android app

1 var uname = document.getElementById("email");
2 var pword = document.getElementById("password");
3 Android.stealCredential(window.location.hostname, uname.value, pword.value);

(d) Injected JavaScript for Android WebView

Listing 1: WebView Credential Exfiltration Scripts for iOS and Android

and authorization errors, misunderstandings about the web
security model, and CSRF/XSS attacks.

More recently, Oesch and Ruoti [20] studied autofill in thirteen
password managers, replicating and expanding previous work [15,
24, 25]. Their results showed that while modern passwordmanagers
had addressed several key issues revealed by past studies, they
remained vulnerable.

Within our work, we leverage the tests used by Oesch and
Ruoti [20] in our testing of autofill in mobile frameworks and
WebView controls. Using these tests allows us to compare our
results to the results for desktop managers, demonstrating that
even though these frameworks should perform better than desktop
managers, they are worse than the least secure desktop managers.

Mobile Autofill Security: Aonzo et al. [1] first demonstrated
that the Android autofill service leaves app-to-domain mappings
to individual managers. They investigate five managers (Keeper,
LastPass, 1Password, Dashlane, Smart Lock), finding that four of
these could be tricked into suggesting to the user that they autofill
credentials for a legitimate app into the malicious app. Only Smart
Lock avoided this pitfall by using cryptographic attestation.

Of the nine combinations of properties (P1–P3) and autofill
contexts (mobile browsers, native UI elements in apps, WebView
controls in apps), only one (P2 for native UI elements) has been
explored by this prior work. Even in this one case, we expand on
this prior work by (1) identifying the need for bidirectional
app-to-domain mapping and (2) investigating how frameworks, as
opposed to individual password managers, address this property.

Feasibility of Phishing Attacks: Phishing attacks have been
shown to be effective even against the most sophisticated users
when visual deception, such as website redressing or overlays, is
used [7]. Felt and Wagner [8] also found that on mobile devices,
users are often asked by legitimate apps and websites to autofill
credentials after clicking a link. As a result, users become
conditioned to provide their credentials after clicking a link,
making phishing attacks even easier. Luo et al. [16] also
demonstrated several effective phishing attacks against WebView
on iOS that utilized UI redressing and overlays to steal credentials.
Most recently, Tuncay et al. [27] demonstrated that naming
policies for Android apps allowed malicious apps to effectively
masquerade as legitimate apps when requesting permissions from
the user.

Several works have explored ways of protecting users from
malicious apps that mimic the GUI of legitimate apps in an attempt
to perform phishing or click-jacking attacks [2, 9]. Other prior
work suggested content-based, and heuristic approaches for
protecting mobile users from phishing websites [12, 23, 29]. To our
knowledge, none of these solutions have been implemented, and
phishing remains a problem.

This work is relevant to our paper as it shows that phishing
attacks continue to work on mobile devices. In particular, Tuncay
et al.’s results showing that phishing attacks for permissions were
successful on Android suggest that the credential phishing attacks
described in our paper are also likely to be successful.

The Emperor’s New Autofill Framework: A Security Analysis of Autofill on iOS and Android ACSAC ’21, December 6–10, 2021, Virtual Event, USA

8 DISCUSSION
Based on our findings, current mobile autofill frameworks are not
achieving their potential. However, we do not believe they should
be abandoned but fixed to secure the autofill process properly.
Below we discuss (a) recommendations for addressing theWebView
phishing attacks we identified, (b) guidelines for secure autofill
framework implementations, and (c) areas requiring additional
research.

8.1 Addressing WebView Phishing Attacks
One approach to addressing the WebView phishing attacks would
be for the frameworks to adopt the proposal from Stock and
Johns [25] to only fill credentials into Web requests, not the actual
webpage. Frameworks would implement this proposal by
autofilling fake credentials into the webpage, replacing them with
real credentials only when sent over the wire. This behavior would
prevent JavaScript, and by extension apps, from accessing the
filled credentials.

Implementing this proposal on desktop environments is not
currently possible as desktop browsers do not let extensions
modify Web request contents. In contrast, on mobile, the same
vendor maintains the autofill framework, the mobile browser, and
the WebView control. This integration allows the vendor to
implement Stock and Johns’ proposal, and we strongly suggest
they do so. Note that implementing this feature would fully
enforce P3 for both WebView controls and the mobile browser.

Alternatively, autofill could be disabled for WebViews that have
had JavaScript injected into them by the app. Similarly, after
autofill has occurred, injecting JavaScript could be disabled for the
WebView until a new page is loaded (unloading the credentials).
These restrictions could be loosened for WebViews containing
content from a domain if the domain is associated with the current
app.

8.2 Recommendations for Secure Autofill
Frameworks

Based on our results, we provide the following recommendations
for autofill frameworks:

(1) Require user interaction. User interaction should always
be required before credentials are autofilled. This
requirement ensures that users know when credentials are
requested and entered, increasing the likelihood of
detecting malicious activity. While this is far from a perfect
defense, it does prevent silent credential harvesting and at
least gives users a chance to detect a phishing attack.

(2) Authenticate domains. For both browsers and WebView
controls, the domain’s identity displayed in the WebView
should be cryptographically verified using TLS. This
verification will help prevent network injection attacks
from being able to access filled credentials.

(3) Provide a cryptographically verified bidirectional
app-to-domain mapping. Frameworks should require
that apps identify the domains they are associated with,
with this mapping file included in the code signing process.
Domains should also be required to identify the apps that

their credentials can be filled into, and this mapping should
use the code signing key’s fingerprint. Only when both
these mappings agree should a given domain’s credentials
be autofilled into an app.

iOS Password AutoFill already provides this property, and
Android could provide this property by expanding their
existing DAL-based app-to-domain pairing scheme,
enforcing it at the framework level. While currently,
adoption of DAL is limited—we analyzed 4,081 of the most
popular paid apps and 9,345 of the most popular free apps
on the Play Store and found that only 10% of paid apps
(𝑛 = 402) and 20% of free apps (𝑛 = 1879) were whitelisted
by a DAL file—we believe that adoption would rapidly
increase if Google required such links for apps to be
published or updated in the Google Play Store.

(4) Thoroughly evaluate webpages. Before filling in
credentials, the framework should check all of the
properties discussed in Section 4. For example, the
framework should check the form to be autofilled, ensuring
that the password is sent to the correct destination using
HTTPS. Additionally, cross-domain autofill should be
disabled.

(5) Allow password managers to override autofill
decisions. When discussing our findings with password
manager developers, we found that they were aware of
many of the highlighted issues. However, these issues
remain unresolved because the frameworks either prevent
managers from gathering the information necessary to fix
these problems (iOS app extensions and Android autofill
service) or prevent them from changing the autofill process
(iOS AutoFill framework). Manager security could be
improved if the frameworks provided managers with more
information about the autofill environment and process,
such as providing information about the webpage where
credentials are filled. Similarly, while the frameworks
should provide safe defaults, managers could be allowed to
override the frameworks’ decisions to further restrict
autofill as necessary. This behavior would return the locus
of control to managers, allowing them to address an autofill
framework’s design flaws.

8.3 Future Research
In addition to addressing the issues identified in this paper, we
identify three areas of future research.

First, in this paper, we assume that users are likely to fall for the
phishing attacks described in §6. Based on how easily these phishing
attacks can be obscured, the fact that the autofill dialog is supposed
to indicate that phishing is not occurring, and the copious research
establishing the ease of phishing users generally [7, 8, 16, 27], we
believe our assumption is sound. Still, future user studies could
examine this attack, empirically confirming its feasibility. Moreover,
such research may also identify ways in which the autofill dialog
could be improved to protect users from phishing attacks.

Second, we believe that research needs to be conducted to
design a mechanism that allows a domain to indicate whichweb

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Sean Oesch, Anuj Gautam, and Scott Ruoti

pages should receive autofilled credentials. This functionality
would prevent vulnerable webpages on the domain other than
these login pages from stealing users’ autofilled credentials,
especially if password managers prevent autofill within
same-origin iframes. We believe this feature could be implemented
similarly to how mappings work for iOS Password AutoFill or DAL
files, having a single file on the website that lists acceptable URLs.
Still, research is needed to identify the feasibility and effectiveness
of this proposal and the best way to implement it.

Third, research is needed on creating an autofill framework for
desktop environments. While browsers do provide a platform to
deploy password manager extensions, they do not provide any
password management-centric functionality—i.e., they do not
assist with the detection of login forms nor facilitate autofilling
credentials. This lack of framework support causes a mixed level of
security for password manager extensions. Moreover, there is no
OS-level autofill framework, making it nearly impossible for
passwords managers to provide universal autofill for desktop
applications.

9 CONCLUSION
Our analysis provides a mixed message regarding the effectiveness
of mobile autofill frameworks. On the positive side, all frameworks
enforce user interaction before autofill (P1), significantly improving
upon the situation on the desktop. Additionally, iOS password
autofill fully secures the autofill process for native UI elements in
apps.

On the other hand, within mobile browsers, all frameworks
failed to correctly check credential mapping (P2), and none
adequately protected filled credentials (P3), in many cases being
less secure than even the worst managers on desktop. Moreover,
the frameworks impeded the ability of managers to provide these
properties themselves. Thus, even with improvements for P1, this
leaves mobile password managers less secure than their desktop
counterparts. These same issues cropped up for autofill within
WebView controls in apps, with other issues leading to our
identification of two phishing attacks enabled by the mobile
autofill frameworks. Critically, for both attacks, the password
manager acts as a confused deputy, displaying the autofill dialog
and suggesting that the user fills the credential being targeted by
the attack, a dialog which in all other contexts indicates to the user
that their credentials are not being phished (see §2.1).

To us, these results represent an inflection point for autofill
frameworks. Either an immediate effort is needed to remedy the
security flaws in these frameworks, or there is a need for these
frameworks to be abandoned, allowing managers to secure the
autofill process properly. We strongly advocate for the prior
approach, as if implemented correctly, these frameworks can
ensure correct behavior across all password managers. Moreover,
we also advocate for creating similar frameworks in browsers and
desktop operating systems, allowing the benefits promised by
frameworks to become universal.

RESPONSIBLE DISCLOSURE
We have informed the developers of the frameworks and password
managers we evaluated of our results and have notified both Apple
and Google of the WebView-based attacks we discovered.

RESEARCH ARTIFACTS
The generated data, scripts used to analyze that data, and all analysis
artifacts will be available for download at [redacted].

REFERENCES
[1] Simone Aonzo, Alessio Merlo, Giulio Tavella, and Yanick Fratantonio. Phishing

attacks on modern android. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 1788–1801, 2018.

[2] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio,
Christopher Kruegel, and Giovanni Vigna. What the app is that? deception
and countermeasures in the android user interface. In 2015 IEEE Symposium on
Security and Privacy, pages 931–948. IEEE, 2015.

[3] Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of
70 million passwords. In 2012 IEEE Symposium on Security and Privacy, pages
538–552. IEEE, 2012.

[4] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. The
quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In 2012 IEEE Symposium on Security and Privacy, pages
553–567. IEEE, 2012.

[5] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng
Wang. The tangled web of password reuse. In NDSS, volume 14, pages 23–26,
2014.

[6] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. Password strength: An
empirical analysis. In 2010 Proceedings IEEE INFOCOM, pages 1–9. IEEE, 2010.

[7] Rachna Dhamija, J Doug Tygar, and Marti Hearst. Why phishing works. In
Proceedings of the SIGCHI conference on Human Factors in computing systems,
pages 581–590, 2006.

[8] Adrienne Porter Felt and David Wagner. Phishing on mobile devices. na, 2011.
[9] Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg Essl, J Alex

Halderman, Z Morley Mao, and Atul Prakash. Android ui deception revisited:
Attacks and defenses. In International Conference on Financial Cryptography and
Data Security, pages 41–59. Springer, 2016.

[10] Dinei Florencio and Cormac Herley. A large-scale study of web password habits.
In Proceedings of the 16th international conference on World Wide Web, pages
657–666. ACM, 2007.

[11] Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke Lee. Cloak
and dagger: from two permissions to complete control of the ui feedback loop. In
2017 IEEE Symposium on Security and Privacy (SP), pages 1041–1057. IEEE, 2017.

[12] Diksha Goel and Ankit Kumar Jain. Mobile phishing attacks and defence
mechanisms: State of art and open research challenges. Computers & Security,
73:519–544, 2018.

[13] Yeongjin Jang, Chengyu Song, Simon P Chung, Tielei Wang, and Wenke Lee.
A11y attacks: Exploiting accessibility in operating systems. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pages
103–115, 2014.

[14] Jung-Woong Lee and In-Seok Kim. A study on the vulnerability of security
keypads in android mobile using accessibility features. Journal of the Korea
Institute of Information Security and Cryptology, 26(1):177–185, 2016.

[15] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. The emperor’s new
password manager: Security analysis of web-based password managers. In
USENIX Security Symposium, pages 465–479, 2014.

[16] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. Touchjacking
attacks on web in android, ios, and windows phone. In International Symposium
on Foundations and Practice of Security, pages 227–243. Springer, 2012.

[17] Sanam Ghorbani Lyastani, Michael Schilling, Sascha Fahl, Michael Backes, and
Sven Bugiel. Better managed than memorized? studying the impact of managers
on password strength and reuse. In 27th USENIX Security Symposium, pages
203–220, 2018.

[18] Mohammad Naseri, Nataniel P Borges, Andreas Zeller, and Romain Rouvoy.
Accessileaks: Investigating privacy leaks exposed by the android accessibility
service. Proceedings on Privacy Enhancing Technologies, 2019(2):291–305, 2019.

[19] Cybercrime Support Network. Is hotel wifi safe? no, and here’s why. https:
//cybercrimesupport.org/is-hotel-wifi-safe/, 2020. Accessed: 2020-10-08.

[20] Sean Oesch and Scott Ruoti. That was then, this is now: A security evaluation of
password generation, storage, and autofill in browser-based password managers.
In 29th USENIX Security Symposium (USENIX Security 20), Boston, MA, Aug 2020.
USENIX Association.

[redacted]
https://cybercrimesupport.org/is-hotel-wifi-safe/
https://cybercrimesupport.org/is-hotel-wifi-safe/

The Emperor’s New Autofill Framework: A Security Analysis of Autofill on iOS and Android ACSAC ’21, December 6–10, 2021, Virtual Event, USA

[21] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. Let’s go
in for a closer look: Observing passwords in their natural habitat. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 295–310. ACM, 2017.

[22] Shannon Riley. Password security: What users know and what they actually do.
Usability News, 8(1):2833–2836, 2006.

[23] Hossain Shahriar, Tulin Klintic, Victor Clincy, et al. Mobile phishing attacks and
mitigation techniques. Journal of Information Security, 6(03):206, 2015.

[24] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen, and Collin Jackson.
Password managers: Attacks and defenses. In USENIX Security Symposium, pages
449–464, 2014.

[25] Ben Stock and Martin Johns. Protecting users against xss-based password
manager abuse. In Proceedings of the 9th ACM symposium on Information,
computer and communications security, pages 183–194. ACM, 2014.

[26] Positive Technologies. Web applications vulnerabilities and threats: statistics for
2019. https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/,
2020. Accessed: 2020-10-08.

[27] Güliz Seray Tuncay, Jingyu Qian, and Carl A. Gunter. See no evil: Phishing
for permissions with false transparency. In 29th USENIX Security Symposium
(USENIX Security 20), pages 415–432. USENIX Association, August 2020.

[28] Ke Coby Wang and Michael K Reiter. How to end password reuse on the web.
arXiv preprint arXiv:1805.00566, 2018.

[29] Longfei Wu, Xiaojiang Du, and Jie Wu. Mobifish: A lightweight anti-phishing
scheme for mobile phones. In 2014 23rd International Conference on Computer
Communication and Networks (ICCCN), pages 1–8. IEEE, 2014.

[30] GuangLiang Yang, Jeff Huang, and Guofei Gu. Iframes/popups are dangerous in
mobile webview: studying and mitigating differential context vulnerabilities. In
28th USENIX Security Symposium (USENIX Security 19), pages 977–994, 2019.

[31] ZDNet. Fbi warns about ongoing attacks against software supply chain
companies. https://www.zdnet.com/article/fbi-warns-about-ongoing-attacks-
against-software-supply-chain-companies/, 2020. Accessed: 2020-10-08.

[32] Yue Zhang, Jason I Hong, and Lorrie F Cranor. Cantina: a content-based approach
to detecting phishing web sites. In Proceedings of the 16th international conference
on World Wide Web, pages 639–648, 2007.

A PASSWORD MANAGER DOWNLOAD
STATISTICS

This section presents the figures detailing app download statistics
for the password managers we studied on iOS and Android. On
Android, we used the download count from the Google Play Store
(see Figure 6). Because iOS does not provide detailed information
about downloads from the App Store, we used estimates for April
2020 from SensorTower (see Figure 7).10

B PASSWORD MANAGER BROWSER
EVALUATION RESULTS

To test browser autofill for the mobile frameworks, we evaluated
the security of fourteen different managers implemented with those
frameworks. This section gives detailed results for each manager
using the evaluation criterion identified by Oesch and Ruoti [20].
Table 5 gives the results of this evaluation for iOS and Table 6
gives the results for Android. Note that in Table 5 there is only a
single row for iOS autofill, as this framework completely handles
the autofill experience for managers, obviating the need to report
on the performance of individual managers (i.e., they are all the
same). In contrast, both iOS app extensions and the Android autofill
service allow the managers to have limited control over the autofill
process.

In addition to testing the various mobile managers, we also
tested the password managers integrated into several mobile
browsers. While these managers do not use the system-wide
autofill frameworks, they are a point of comparison for the
managers implemented with the mobile frameworks. These
10https://sensortower.com/

Ke
ep

er

La
st

Pa
ss

Sa
fe

In
Cl

ou
d

No
rto

n

Ke
ep

as
s2

An
dr

oi
d

Da
sh

la
ne

Av
as

t P
as

sw
or

ds

1P
as

sw
or

d

Ro
bo

Fo
rm

En
pa

ss

Bi
tw

ar
de

n

5K
10K

100K

1M

10M

lo
g1

0(
do

wn
lo

ad
s)

Figure 6: Google Play Store Downloads from March 2020
La

st
Pa

ss

1P
as

sw
or

d

Da
sh

la
ne

Ke
ep

er

No
rto

n

Bi
tw

ar
de

n

St
ro

ng
bo

x

Av
as

t P
as

sw
or

ds

Ro
bo

Fo
rm

En
pa

ss

Sa
fe

In
Cl

ou
d

5K
10K

100K

1M

lo
g1

0(
do

wn
lo

ad
s)

Figure 7: iOS Download Estimates from April 2020

https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://www.zdnet.com/article/fbi-warns-about-ongoing-attacks-against-software-supply-chain-companies/
https://www.zdnet.com/article/fbi-warns-about-ongoing-attacks-against-software-supply-chain-companies/
https://sensortower.com/

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Sean Oesch, Anuj Gautam, and Scott Ruoti

browser managers only work within their respective browsers and
do not support generic app-based autofill.

C ANDROID CREDENTIAL MAPPING
DETAILS

This section gives additional details on how password managers
handled mapping apps and the domains associated with passwords
stored in the password manager.

1Password, Enpass, Keepass2Android, and RoboForm
require users to manually associate apps and domains. Of these
three, only RoboForm warns users of the danger that manual
association can cause.

Avast maintains a SQLite database with two relevant tables.
The domain_info table contains a list of 1,203 websites whose
package names are a simple inversion of their website address. For
example, facebook.com is matched with com.facebook. If the first
two components of an app’s package name are in this table, then
the app is considered to match (e.g., com.walmart.evil is matched
to walmart.com). The second table, alternate_mapping is a static
mapping for apps that do not use a simple name inversion. For
example, this table maps ign.com to com.mobile.ign.

Bitwarden uses a simple heuristic that looks for substring
matches between the domain and the components of the app’s
package name, though it does ignore components that are TLDs
(e.g., .com, .org). For example, com.wal.evil would match
domains that contained wal or evil—for example, walmart.com.

Dashlane maintains a list of 285 mobile apps, their associated
domains, and a SHA-512 hash of their signing certificates. If an app
is not on this list, Dashlane will not even offer to autofill it. Unique
to Dashlane, mapping behavior changes if the user turns off the
autofill service and only enables the accessibility service. In this
case, instead of checking the list of allowed apps, Dashlane uses a
simple heuristic that compares the components of the package name
to domains looking for matches (ignoring common components
such as com and android). If a match is found, a warning is shown
to the user informing them that they are autofilling an “unverified
app”.

SafeInCloud uses a simple heuristic that considers the first
two components of the package name and matches those against
domains. For example, com.walmart.evil will match
walmart.com. While this does require malicious apps to use the
same prefix as a legitimate app, we have confirmed that it is
possible to upload such apps to the PlayStore.

Smart Lock maps apps by downloading the DAL files for the
stored domains. It did not allow a user to build an association
between a website and an application.

Keeper uses a more complex heuristic to establish its credential
mappings. First, it will query the app store for information about
the application. If the app is found, Keeper will use the app
developer website field as the domain for the app. If the app is
not found, the user will need to associate the app to a domain
manually. As first reported by Aonzo et al. [1], this heuristic is
vulnerable to attackers who lie about the app developer website,
something which is not verified when apps are uploaded. We
verified this by uploading an app to the Play store with the
developer website set to walmart.com and checking that Keeper

does indeed offer to fill Walmart’s credentials into our app. We
note that Keeper does show a warning in this case.

Lastpass contains a SQLite database that maps apps and
domains. Additionally, like Lockwise and SafeInCloud, it uses a
simple heuristic that considers the first two components of the
package name and matches those against domains. Unlike those
two, if no match is found, the user is prompted to pick which
domain should be matched with the app. If the user does so, they
are then asked if they want to share this mapping with other users.
If enough users share this mapping, it will be auto-suggested by
LastPass to other users in the future (crowdsourced mappings).
LastPass does warn users when they first associate an app and a
domain.

Norton includes a static file
(resources/assets/theirdpartyapp.properties) mapping
131 package names to domains. If an app is not on this list, Norton
will not show an autofill dialog, not even to inform the user about
the lack of a match.

The Emperor’s New Autofill Framework: A Security Analysis of Autofill on iOS and Android ACSAC ’21, December 6–10, 2021, Virtual Event, USA

In
te
ra
ct
io
n
re
qu

ire
d
fo
rH

TT
PS

In
te
ra
ct
io
n
re
qu

ire
d
fo
rb

ad
ce
rt

In
te
ra
ct
io
n
re
qu

ire
d
fo
rH

TT
P

W
on

’t
fil
ls
am

e-
or
ig
in

ifr
am

e

W
on

’t
fil
lc
ro
ss
-o
rig

in
ifr
am

e

W
on

’t
fil
ld

iff
er
en
tU

RL
pa
th

W
on

’t
fil
lH

TT
PS

→
ba
d
ce
rt

W
on

’t
fil
lH

TT
PS

→
H
TT

P

W
on

’t
fil
ld

iff
er
en
ta

ct
io

n
(s
ta
tic

)

W
on

’t
fil
ld

iff
er
en
ta

ct
io

n
(d
yn

am
ic
)

W
on

’t
fil
ld

iff
er
en
tm

et
ho

d

W
on

’t
au
to
fil
ld

iff
er
en
ti

np
ut

fie
ld
s

W
on

’t
fil
lt

yp
e=

"t
ex

t"
fie

ld

W
on

’t
fil
ln

on
-lo

gi
n
fo
rm

fie
ld
s

W
on

’t
fil
li
nv

is
ib
le
pa
ss
w
or
d
fie

ld

Fi
lls

pa
ss
w
or
d
on

tr
an
sm

is
si
on

O
be
ys

au
to

co
mp

le
te

="
of

f"

System Interaction iframe Difference in fill form Fields Misc
Password AutoFill # # # # # # # # # # # # #

1Password # # G# # # # # # # # #
Avast # # # # # # # # # #
Bitwarden # # # # # # # # # # #
Enpass # # # # # # # # # # # # #
Keeper # # # # # # # # # # # #
LastPass # # # # # # # # # # #
Norton # # # # # # # # #A

pp
ex
te
ns
io
ns

RoboForm # # # # # # # # # # #
Chrome # # # # # # # # # # # #
Firefox # # # # # # # # # # #

Br
ow

se
r

Edge # # # # # # # # # # #

 Secure behavior G# Partially secure behavior # Insecure behavior
Table 5: Autofill in mobile browsers on iOS

In
te
ra
ct
io
n
re
qu

ire
d
fo
rH

TT
PS

In
te
ra
ct
io
n
re
qu

ire
d
fo
rb

ad
ce
rt

In
te
ra
ct
io
n
re
qu

ire
d
fo
rH

TT
P

W
on

’t
fil
ls
am

e-
or
ig
in

ifr
am

e

W
on

’t
fil
lc
ro
ss
-o
rig

in
ifr
am

e

W
on

’t
fil
ld

iff
er
en
tU

RL
pa
th

W
on

’t
fil
lH

TT
PS

→
ba
d
ce
rt

W
on

’t
fil
lH

TT
PS

→
H
TT

P

W
on

’t
fil
ld

iff
er
en
ta

ct
io

n
(s
ta
tic

)

W
on

’t
fil
ld

iff
er
en
ta

ct
io

n
(d
yn

am
ic
)

W
on

’t
fil
ld

iff
er
en
tm

et
ho

d

W
on

’t
au
to
fil
ld

iff
er
en
ti

np
ut

fie
ld
s

W
on

’t
fil
lt

yp
e=

"t
ex

t"
fie

ld

W
on

’t
fil
ln

on
-lo

gi
n
fo
rm

fie
ld
s

W
on

’t
fil
li
nv

is
ib
le
pa
ss
w
or
d
fie

ld

Fi
lls

pa
ss
w
or
d
on

tr
an
sm

is
si
on

O
be
ys

au
to

co
mp

le
te

="
of

f"

System Interaction iframe Difference in fill form Fields Misc
1Password # G# # # # # # # # # # # # #
Avast Passwords # G# # # # # # # # # # # #
Bitwarden # G# # # # # # # # # # # # #
Dashlane # G# # # # # # # # # # # #
Enpass # # # # # # # # # # # # #
Keeper # G# # # # # # # # # # # # #
LastPass # G# # # # # # # # # # # #
Norton # G# # # # # # # # # # # #
RoboForm # G# # # # # # # # # # # #
SafeInCloud # # # # # # # # # # # # # #

A
ut
ofi

ll
se
rv
ic
e

Smart Lock # # # # # # # # # # # # # #
Chrome # # # # # # # # # # # # # #
Firefox # # # # # # # # # # # # # # # #

Br
ow

se
r

Opera # # # # # # # # # # # # # #

 Secure behavior G# Partially secure behavior # Insecure behavior
Table 6: Autofill in mobile browsers on Android

	Abstract
	1 Introduction
	2 Background
	2.1 Secure Autofill
	2.2 WebView

	3 Evaluation Methodology
	3.1 Mobile Autofill Frameworks
	3.2 Testing Approach

	4 Browser Autofill
	4.1 P1—User Interaction
	4.2 P2—Credential-to-Domain Mapping
	4.3 P3—Protecting Filled Credentials

	5 App Autofill—Native UI Elements
	5.1 P1—User Interaction
	5.2 P2—Credential-to-App Mapping
	5.3 P3—Protecting Filled Credentials

	6 App Autofill—WebView Controls
	6.1 P1—User Interaction
	6.2 P2—Credential-to-Domain Mapping
	6.3 P3—Protecting Filled Credentials

	7 Related Work
	8 Discussion
	8.1 Addressing WebView Phishing Attacks
	8.2 Recommendations for Secure Autofill Frameworks
	8.3 Future Research

	9 Conclusion
	References
	A Password Manager Download Statistics
	B Password Manager Browser Evaluation Results
	C Android Credential Mapping Details

